Solving 10385 - Duathlon (Ternary search)
[andmenj-acm.git] / 10004 - Bicoloring / p10004.cpp
blobe9cc929c3627acb92c3276e715d697a0d266fd23
1 #include <iostream>
2 #include <vector>
3 #include <algorithm>
4 using namespace std;
6 bool g[200][200]; //matriz de adyacencia del grafo
7 bool bicolorable;
9 bool visiteEdge(const int &u, const int &v, vector<int> visitas){
10 for (int i=0; i<visitas.size()-1; i++){
11 if ((visitas[i] == u && visitas[i+1] == v ) || (visitas[i] == v && visitas[i+1] == u))
12 return true;
14 return false;
17 void bt(int nodo, const int &n, vector<int> visitados){
18 if (!bicolorable) return;
19 vector<int> vecinos;
20 //find neighbours
21 for (int i=0; i<n; ++i){
22 if (g[nodo][i]) vecinos.push_back(i);
24 //backtrack for each neighbour
25 for (int i=0; i<vecinos.size(); ++i){
26 if (!visiteEdge(nodo, vecinos[i], visitados)){
27 int k = -1;
28 for (int j=0; j<visitados.size(); ++j){
29 if (visitados[j] == vecinos[i]) k = j;
31 if (k > -1 && ((visitados.size() - k) % 2) == 1){
32 /*it means I have already visited node vecinos[i], which is at position k
33 of visitados, i.e, vecinos[i] = visitados[k]. It also means that I traveled
34 an odd number of nodes to arrive to vecinos[i] again, which means the graph
35 has an odd cycle and thus is not bicolorable. */
36 bicolorable = false;
38 vector<int> temp(visitados);
39 temp.push_back(vecinos[i]);
40 e[nodo][vecinos[i]] = e[vecinos[i]][nodo] = true;
41 bt(vecinos[i], n, temp);
47 int main(){
48 int n;
49 cin >> n;
50 while (n){
51 //process case
52 memset(g, 0, sizeof(g));
53 bicolorable = true;
54 int l;
55 cin >> l;
56 //read graph
57 for (int i=0; i<l; ++i){
58 int x, y;
59 cin >> x >> y;
60 g[x][y] = g[y][x] = true;
63 for (int i=0; i<n; ++i){
64 //bt starting at every node
65 if (bicolorable){
66 vector<int> visitados;
67 visitados.push_back(i);
68 bt(i, n, visitados);
71 if (!bicolorable) cout << "NOT BICOLORABLE.\n";
72 else cout << "BICOLORABLE.\n";
73 cin >> n;
75 return 0;